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Abstract. A theoretical study of the s-f model is made on the basis of a Green function 
technique. ‘The spin wave damping is numerically calculated using parameters appropriate 
to EuO. The temperature and wave vector dependence is in very good agreement with the 
experimental data. 

1. Introduction 

In the recent past much research effort has been focused on ferromagnetic 4f systems 
like Eu chalcogenides EuX (X = 0, S) [l], which are considered as almost ideal model 
substances for basic problems in the theory of magnetism. They are characterised by 
strictly localised magnetic moments stemming from the only partially filled 4f shell of 
the involved rare-earth (RE) ion. In insulators such as EuO and EuS these moments are 
coupled by a certain type of superexchange. The undoped EuX are therefore thought to 
be good realisations of the three-dimensional Heisenberg model. Still more spectacular 
than their purely magnetic properties are their magneto-optical properties. The drastic 
red shift of the optical absorption edge observed in the ferromagnetic compounds upon 
cooling below Tc [2] is a very frequently investigated effect in this connection. The 
physical properties of the magnetic and semiconducting EuX strongly depend on the 
concentration of free charge carriers, created for instance by doping with suitable 
impurities (Gd3+) [3-51. In EuS and EuO, the free carrier concentration exceeds 
10l8 ~ m - ~ .  This finds a natural interpretation in the existence and temperature depen- 
dence of quasiparticles in the conduction band of a ferromagnetic semiconductor EuX. 

It isnow wellestablished [I] that agooddescription of ferromagneticsemiconductors, 
as for instance EuO, EuS, CdCr2S4 and CdCr2Se4, is provided by the s-f (or s-d) model. 
This model consists of a localised spin subsystem and a delocalised electron subsystem. 
The interaction between the two subsystems is intra-atomic. Unfortunately, exact results 
for the s-f model are available only for some limiting cases [6-81. 

The influence of the s-f (or s-d) interaction I on the magnetic properties has been 
theoretically studied by many authors. Woolsey and White [3] calculated the electron 
and acoustic magnon energies in the limit of low temperatures where spin wave theory 
is valid. Babcenco and Cottam [9] have given a much more detailed description of the 
magnetic excitation spectrum using a field-theoretical perturbation formalism. They 
obtained the lifetime of the magnetic excitations but only in the first-order theory 
and discussed it at T = 0. Mauger and Mills [lo] have investigated how the exchange 
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Figure 1. Temperature dependence of the Figure 2. Temperature dependence of the 
magnon damping ym(T) for J o  = 0.0001 eV, magnon damping y , (T)  for Jo  = 0.0001 eV, 
Z=0.2eV, W = 2 e V ,  S=g,  H = O ,  n=0.05,  I = 0.2 eV, S = f, H = 0,  n = 0.05, k = 3n/10 
k = 3n/10 in the direction [lll]. in the direction [lll] and for different band 

width values: A, W = 1.5; B, 2; C, 2.5 eV. 

interaction I in ferromagnetic semiconductors modifies the dynamics of the spin exci- 
tations when the localised spins are no longer dilute. The time-dependent spin Green 
functions are calculated up to second-order in I. The damping of the two modes is shown 
to be small in the low-temperature limit. In the high-temperature limit, the expressions 
are shown to match the former results of the theory of spin resonance in dilute magnetic 
alloys. 

The calculation and investigation of spin wave damping is a topic of great interest 
for theorists as well as experimentalists. The spin wave damping in ferromagnetic 
semiconductors was observed experimentally by Anisimov et a1 [ll] in CdCr2Se4 and 
CdCr2S4, and by Gurevich et a1 [12] in EuO. In fact the imaginary parts of the energies 
corresponding to lifetime broadening effects are usually not considered because of the 
mathematical difficulties in their calculations. Karmakar et a1 [13] have studied the 
electronic damping rate ~ ( k  = 0) of the s-f model in the paramagnetic phase close to Tc. 
Wesselinowa [14-161 has extended the theory to higher order and determined for the 
first time beyond the RPA the corrections to the electron and magnon energies and the 
damping over the whole temperature region. The theoretical results were applied to 
CdCr2Se4. The band occupation dependence of the conduction electron magnetisation 
of the energy gap and of the electronic damping for I > 0 and I < 0 was obtained in [15]. 
The influence of an external magnetic field H on the magnon and electronic damping is 
discussed in [16] but for wave vector k = 0. 

The aim of the present paper is to study the wave vector dependence of the magnon 
damping in the interval from 0 to ~ J G  and for different directions in the system for the 
ferromagnetic and paramagnetic phases in application to EuO. 

2. The Hamiltonian 

The Hamiltonian of the system is given by 
H =  HM + H E  + H M E .  (1) 

HM is the Heisenberg Hamiltonian for the ferromagnetically ordered f or d electrons: 
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Figure 3. Temperature dependence of the 
magnon damping y m ( T )  for J o  = 0.0001 eV, 
I = 0 . 2 e V ,  W = 2 e V ,  S = i ,  H - 0 ,  n=0.05 
and k = 3rc/10 for two different directions: A, 
[lll]; B, [loo]. 

where Si is the spin operator. The exchange interaction J ,  is a function of the lattice 
constant. H i s  an external magnetic field applied in the z direction. 

HE represents the usual Hamiltonian of the conduction band electrons 

where a& and aqO are the Fermi creation and annihilation operators in the state qa, p is 
the chemical potential, and eq,, are the Bloch energies 

= - D ~ B  H o =  +-1. 

The most important term in (1) is the operator HME which couples the two subsystems 
(2) and (3) by an intra-atomic exchange interaction 

(4) 
I 

H M E  = --E [S,+_,U,~_U,+ + S i - p ~ , f , ~ Q -  + S i - p ( ~ p + f ~ q +  -u,’-u,-)] 
2N Q.P 

where I is the constant interaction energy 

3. Magnon damping 

To study the magnetic excitation spectrum of the system, we evaluate the Green function 
corresponding to the excitation of a transverse spin component defined in matrix form 
as 

G;k(t) = - ie(t)([Bk(t), B:]) 

where the operator Bk stands symbolically for the set S: , x,, u ~ + ~ + u , , - .  Using a Green 
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function method proposed by Tserkovnikov [17] we obtain for the magnon damping 
Y d k )  P61: 

n 
Ym(k)  = -2 vL[fip(2(S") + N k k q  + ni',+q> - N k - q N p + q l  

2N2 q 3 p  

The expressions E, = E,(q)  and wqu are the spin-wave energy and the electron energy 
in the generalised Hartree-Fock approximation, respectively 

E1/2(k) = 0 . 5 ( ~ 1 1  + ~ 2 2  +.  EH - E 2 2 I 2  + 4 E 1 2 ~ 2 1 )  (8) 

with 

E11 = gpBH + (S")(JO - J k )  + zp E22 2pBH + I(sz) 
E12 = - - Z ( S Z )  

wu(k)  = &k - p - a(PBH + OSZ(S")) 

E21 = -zp 

and 

0 = (9) 

where &k is the conduction band energy in the paramagnetic state. For a face-centred 
cubic lattice &k is equal to 

&k = -(W/3)(cos(ak,/2) cos(aky/2) + cos(aky/2) cos(akz/2) 

+ cos(ak,/2) cos(ak,/2)) 

where W is the conduction band width. The band occupation n is given by n = ti+ + ti-, 
Equation (9) together with (7), (8), (10) and (11) build a closed, non-linear set of 
equations for the determination of the chemical potential p.  
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(Sz) and p are the relative localised-spin magnetisation and the conduction-electron 
magnetisation, respectively: 

1 (s') = - 2 {(S f 0.5) coth[(S -k 0.5)PEk] - 0.5 COth(0.5PEk)} (10) N k  

p = (E+ - E-)/2N = (1/2N) o{aQ+aqu). 
q3 0 

(S') and p were self-consistently calculated in [14] for different W and T values. With 
increasing W, (Sz) and the Curie temperature Tc decrease, but very slightly. If W is 
constant and 1 increases, then T, increases too, due to the indirect coupling of the 
localised spins via the conduction electrons. 

The conduction electron magnetisation p shows different behaviour in the cases 
when W 2 0.51s. For W < 0.51S, p reaches the highest value at T = 0 ( p  = 0.5) and then 
decreases with T+ T,. At T = T,, p is zero. If W = 0.51s then p shows the same 
behaviour as for W < 0.51S, only the curve is not so steep and starts at p = 0.25 for 
T = 0. For W > 0.5ZS, p is zero at T = 0, then increases with increasing temperature, 
and at T = Tc is zero, again. 

Babcenco and Cottam [9] and Nolting and Oles [5] obtained only the last term in 
ym(k) ( 5 ) ,  which corresponds to the lowest-order approximation, which is equivalent to 
the generalised mean-field theory or to the first-order of a 1/Z expansion (where Z is 
the number of nearest neighbours). However, as it turns out in our calculations, the 
scattering terms give more important contributions to the damping than the decay terms, 
i.e. the contribution to the damping of order 1/Z2 is larger than that of order 1/Z. 

4. Numerical calculations 

The magnon damping ym(k) was numerically calculated using parameters for EuO [l] 
( Jo  = 0.0001 eV, I =  0.2eV, W = 2eV, S = 8, Tc = 69.33 K) for H =  0, n = 0.05 for 
different temperature T ,  band width Wand wave vector k values in the interval from 0 
to 2n and for different directions in the system: [ 11 11, [ 1101 and [ 1001. The band filling 
increases the Curie temperature T, which is in agreement with the results of Nolting and 
Nolting [18]. In our case for n = 0.05, we obtain Tc = 80 K. 

At low temperatures the damping is extremely small, approaching T,, ym increases 
very strongly (figure 1). The magnon damping above Tc arises from the s-f (or s-d) 
interaction. For 1 = 0, y,(k) is zero, too. In the disordered phase (Sz) and p vanish. As 
a consequence of this, the expression for the damping ym(k) is simpler than for the 
ordered phase. The magnon damping above Tc is nearly temperature-independent, it 
increases very slowly (figure 1). 

Figure 2 shows the band width dependence of ym. The damping is maximum for 
W = 0. With increasing W, ym decreases. 

The magnon damping increases with wave vector k and is maximum for the direction 
[ l l l ]  (figure 3), which is in very good agreement with the experimental data for EuO of 
Gurevich et a1 [ 121. For small k ( k  = 0) the spin wave damping anisotropy is rather small. 
The anisotropy is due to intrinsic and not to extrinsic relaxation processes (scattering on 
inhomogeneities, ionic processes, etc), the contribution of which can be made negligible. 
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